ester to the alcohol (83% yield) and aqueous hydrochloric acid hydrolysis followed by neutralization with a basic resin gave a single carbanucleoside in 66% yield. Neither the mp of the synthetic product ($\mathrm{mp} \mathrm{168-70}{ }^{\circ} \mathrm{C}$) nor the spectral data $\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR) corresponded to (\pm)-aristeromycin.

Since the spectral data for both $\mathbf{1 3}$ and $\mathbf{1 1}$ appeared totally in agreement with the assigned structures, we considered whether the cis hydroxylation may have been "directed" to the more hindered face to give 15.4 A NOE study of the corresponding

methyl ester 16^{4} showed irradiation of H_{b} enhanced both H_{c} (8.3%) and $\mathrm{H}_{\mathrm{f}}(5.6 \%)$ in agreement with the cis 1,4-relationship of the ester and the adenine. Irradiation of H_{c} enhanced both H_{d} and H_{e} indicating their cis relationship, and irradiation of H_{d} enhanced both H_{c} and H_{f} indicating their cis relationship. Thus, all of the structures starting from the cis hydroxylation product to the end must be reassigned as 15-17, ${ }^{4}$ and the final product, then, is (\pm)-lyxo-aristeromycin (17). ${ }^{4}$

To probe the source of the unusual hydroxylation stereochemistry, we hydroxylated 18 and 19. NMR Eu(+3) induced shift studies allow assignment of the stereochemistry of 20^{4} as trans as "expected". ${ }^{15}$ An NOE study of the nitrile 22, derived from

the initial hydroxylation product 21 upon treatment with titanium trichloride, ${ }^{8}$ showed the same pattern as for 16 -confirming the "abnormal" all cis orientation. Comparison of the results of the reaction of 11,18 , and 19 strongly implicates the nitrosulfonylmethane substituent as the director of the osmylation. Since sulfones are known not to direct osmylation, ${ }^{7}$ it appears the source of the stereocontrol is coordination of osmium with the nitro group.

To resolve the issue of aristeromycin synthesis, we required a hydroxylation reagent that would not coordinate to the substituents present in 11. Indeed, basic potassium permanganate ${ }^{16}$ effects cis hydroxylation of 11 to give a product isomeric with 15 . This time, following the same sequence as before (use Scheme I), gave (\pm)-aristeromycin, whose spectral data is identical in all respects with an authentic sample.

The Pd-based reactions provide a very short and convenient synthesis of this carbacyclic nucleoside analogue. Other members may be readily created by similar means or through some of the intermediates reported herein. For example, introduction of a double bond in conjugation with the ester of 9 by sulfenylationdehydrosulfenylation or the selenium equivalent followed by reduction forms neplanocin. ${ }^{17}$ Furthermore, both the natural and the 2,3 -di-epi series are available with complete stereocontrol. The unusual directive effect of the nitro group in cis hydroxylations via catalytic osmylations should prove valuable in stereocontrolled syntheses.

[^0]Acknowledgment. We thank the National Institutes of Health, General Medical Sciences Institute, for their generous support of our programs.

Registry No. 4, 930-22-3; 5, 54460-11-6; 6, 111189-89-0; 7, 111189-90-3; 8, 13190-75-5; 9, 111189-96-9; 10a (diastereomer-1), 111189-94-7; 10a (diastereomer-2), 111265-80-6; 10b (diastereomer-1), 111189-95-8; 10b (diastereomer-2), 111265-81-7; 11 (diastereomer-1), 111189-93-6; 11 (diastereomer-2), 111265-79-3; 12, 111189-92-5; 13, 111189-91-4; 15 (diastereomer-1), 111265-82-8; 15 (diastereomer-2), 111265-83-9; 16, 111265-84-0; 17, 72346-00-0; 20, 111189-97-0; 22, 111189-98-1; LiCH$\left(\mathrm{NO}_{2}\right) \mathrm{SO}_{2} \mathrm{Ph}, 74738-03-7$; 2-pyrimidinone, 557-01-7; adenine, 73-24-5.
Supplementary Material Available: Spectral data for 6, 7, 8, $9,11,13,16$, and 17 (2 pages). Ordering information is given on any current masthead page.

Hydrolysis Mechanisms of Alkynyl Benzoates, Tosylates, and Phosphates

Annette D. Allen, ${ }^{\dagger}$ Tsugio Kitamura, ${ }^{\ddagger}$ Kenneth A. Roberts, ${ }^{\ddagger}$ Peter J. Stang, ${ }^{\dagger \dagger}$ and Thomas T. Tidwell ${ }^{* \dagger}$

Departments of Chemistry, University of Toronto Scarborough Campus, Scarborough Ontario, Canada M1C 1 A4 University of Utah, Salt Lake City, Utah 84112 Received August 21, 1987
Alkynyl benzoates, tosylates, and phosphates have recently been prepared, ${ }^{1, a, b}$ and for $\mathrm{RC} \equiv$ COTs addition of protic acids HX shown to form $\mathrm{RCH}=\mathrm{CXOTs}$, ${ }^{\text {1c }}$ while $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{K}_{2} \mathrm{CO}_{3}$ gives $\mathrm{RCH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{OTs}$. ${ }^{\text {1a }}$ These compounds are of great interest for comparison to other ester types ${ }^{2}$ and for the study of substitution of alkynyl systems, ${ }^{3}$ and we now report that these substrates hydrolyze by several interesting mechanisms, including both electrophilic and nucleophilic attack on the triple bond.

In aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ 1-propynyl benzoate (1), diethyl 1-hexynyl phosphate (2), and 1-hexynyl tosylate (3) were found by ${ }^{1} \mathrm{H}$ NMR analysis of the reaction products to give the carboxylic acid corresponding to the alkynyl moiety, together with the acid derived from the acyl portion of each ester (eq 1-3). The reaction

$$
\begin{align*}
\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{COBz}(1) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}+\mathrm{BzOH} \tag{1}\\
n-\mathrm{BuC} \equiv \mathrm{COPO}_{3} \mathrm{Et}_{2}(\mathbf{2}) \xrightarrow[\substack{\mathrm{H}_{2} \mathrm{SO}_{4}}]{\mathrm{H}_{2} \mathrm{O}} \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{CO}_{2} \mathrm{H}+(\mathrm{EtO})_{2} \mathrm{PO}_{2} \mathrm{H} \\
n-\mathrm{BuC} \equiv \mathrm{COTs}(3) \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{H}_{2} \mathrm{O}} n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{CO}_{2} \mathrm{H}+\mathrm{TsOH} \tag{2}
\end{align*}
$$

products from neutral aqueous solution containing $\mathrm{CH}_{3} \mathrm{CN}$ cosolvent were reacted with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, and the methyl esters of the same acids were isolated and identified. The additional product

[^1]Table I. Hydrolysis Rates of Alkynyl Esters, $\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$

	$k_{\mathrm{H}^{+}}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)^{a}$	$k_{\mathrm{H}_{2} \mathrm{O}}\left(\mathrm{s}^{-1}\right)$	$k_{\mathrm{OH}^{-}}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	$k_{\mathrm{H}^{+} / k_{\mathrm{D}^{+}}}$	$k_{\mathrm{H}_{2} \mathrm{O}} / k_{\mathrm{D}_{2} \mathrm{O}}$
$\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{COBz}^{-5}$	$3.02 \times 10^{-5 b}$	$3.42 \times 10^{-5 \mathrm{c}}$	73.7	2.7 ± 0.8	2.0 ± 0.0
$n-\mathrm{BuC} \equiv \mathrm{COPO}_{3} \mathrm{Et}_{2}$	$4.91 \times 10^{-6 d}$	$1.80 \times 10^{-4 e}$	3.21	2.0 ± 0.1	2.8 ± 0.5
$n-\mathrm{BuC} \equiv \mathrm{COTs}^{-4}$	$1.30 \times 10^{-5 f}$	2.40×10^{-6}	13.0	4.1 ± 1.2	

$\mathrm{kcal} / \mathrm{mol}, \Delta S^{*}=-16.8 \mathrm{eu} .{ }^{d} \log k_{\text {obsd }}=-0.99 H_{\mathrm{o}}-5.31 . \Delta H^{*}=17.4 \mathrm{kcal} / \mathrm{mol}, \Delta S^{*}=-10.6 \mathrm{eu} .{ }^{e} \Delta H^{*}=11.1 \mathrm{kcal} / \mathrm{mol}, \Delta S^{*}=-38.4 \mathrm{eu} .{ }^{f} \log$$k_{\text {obsd }}=-1.38 H_{0}-4.89(r=0.999) .$

Figure 1. Rates of hydrolysis of $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{COBz}(1), n-\mathrm{BuC} \equiv \mathrm{COPO}_{3} \mathrm{Et}_{2}$ (2), and $n-\mathrm{BuC} \equiv \mathrm{COTs}$ (3) as a function of $\mathrm{pH}\left(H_{0}\right.$ below pH 1$)$.
$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{OBz}$ was formed in 46% yield from 1 under these conditions.

The kinetics of the reactions shown in reactions 1-3 in aqueous solutions were followed by UV spectroscopy, and the derived rate constants for hydrolysis are summarized in Table I, together with derived solvent isotope effects and activation parameters. Full kinetic data are given in Supplementary Tables II-IV. The rate measurements were also made by conductivity in certain cases, and satisfactory agreement between rate constants obtained by the two different methods was observed.

The variations of the rate of hydrolysis of 1-3 as a function of $\mathrm{pH}\left(H_{o}\right.$ below pH 1$)$ are shown in Figure 1.

The acid-catalyzed reactions of 1-3 are interpreted as proceeding through the $\mathrm{Ad}_{\mathrm{E}} 2$ mechanism of rate-limiting proton transfer to the β-carbon of the triple bond in each case (eq 4 and 5). This mechanism resembles the pathway established for the

hydration of many alkynes, ${ }^{4}$ with the further feature that mixed acid anhydrides that may be intermediates in the process are rapidly hydrolyzed further to the acids.

The bases of the mechanistic assignment in acid include the slope of the $\log k_{\text {obsd }}$ versus H_{0} plots, the magnitude of the isotope effects $k_{\mathrm{H}^{+}} / k_{\mathrm{D}^{+}}$, and the magnitude of the activation parameters (Table I). All of these are consistent with values obtained for reactions of alkenes ${ }^{5}$ and other alkynes ${ }^{4}$ assigned as proceeding through $\operatorname{Ad}_{\mathrm{E}} 2$ pathways and are different from the values characteristic of other conceivable mechanisms, particularly preequilibrium protenation followed by rate-limiting water attack.

Supportive of the above conclusion is that $k_{\mathrm{H}^{+}}$for $n-\mathrm{BuC} \equiv$ $\mathrm{COPO}_{3} \mathrm{Et}_{2}$ exceeds $k_{\mathrm{H}^{+}}$for $\mathrm{CH}_{2}=\mathrm{CHOPO}_{3} \mathrm{Et}_{2}{ }^{2 j}$ by a factor of 80 , compared with the ratio $k_{\mathrm{H}^{+}}(\mathrm{HC} \equiv \mathrm{COMe}) / k_{\mathrm{H}^{+}}\left(\mathrm{CH}_{2}=\right.$ CHOMe) of 40 . Both of these methyl ethers also react by this mechanism. ${ }^{4}$

The values of $k_{\mathrm{H}^{+}}$for the alkynyl esters 1-3 are each about 10^{5} greater than that for $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3}$ but 10^{5} less than that for $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{COEt}$, consistent with the known ${ }^{2 \mathrm{j}}$ diminished electron donor power to carbocations of acyloxy groups compared to alkoxy groups.

Mixed acid anhydrides are postulated as reaction intermediates following the rate-limiting steps in eq 5 but from the known behavior of such species ${ }^{6}$ are expected to hydrolyze rapidly to the acids under these conditions.

Three distinctly different mechanisms for the neutral and base reactions merit consideration, namely nucleophilic attack on the acyl group or on either carbon of the alkynyl moiety, as illustrated for $\mathrm{H}_{2} \mathrm{O}$ attack in eq 6-8, respectively. Analogoues of all three mechanisms have been observed in reactions in alkynyl halides. ${ }^{3 \mathrm{a}}$ $\mathrm{RC} \equiv \mathrm{COX}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[R \mathrm{C} \equiv \mathrm{CO}-\mathrm{X}-\mathrm{OH}_{2}\right] \rightarrow$ products (6)

Comparative rate data show that the neutral and base reactions of the alkynyl esters 1-3 are accelerated by factors of $10^{2}-10^{5}$ relative to the analogoues PhOAc , $(\mathrm{PhO})_{3} \mathrm{PO}$, and $\mathrm{PhO}_{3} \mathrm{SCH}_{2} \mathrm{Ph}$, respectively. ${ }^{7,8}$ These latter three all react by eq 6 , and the accelerations for $1-3$ could be provided by breaking of the $\mathrm{O}-\mathrm{X}$ bond in a rate-limiting transition state 4 or by a change in mechanism to those of eq 7 or 8 . The occurrence of the process in eq 8 as one path for the neutral reaction of $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{COBz}$ is
(4) Allen, A. D.; Chiang, Y.; Kresge, A. J.; Tidwell, T. T. J. Org. Chem. 1982, 47, 775-779.
(5) Nowlan, V. J., Jr.; Tidwell, T. T. Acc. Chem. Res. 1977, 10, 252-258.
(6) Talbot, R. J. E. In Comprehensive Chemical Kinetics; Bamford, C. H., Tipper, C. F. H., Eds.; Elsevier: NY, 1972; Vol. 10, Chapter 3.
(7) Comparative rate constants are $k_{\mathrm{H}_{2} \mathrm{O}}\left(\mathrm{s}^{-1}\right)$: $\operatorname{PhOAc}\left(2 \times 10^{-8}\right),{ }^{8 \mathrm{a}}$ $(\mathrm{PhO})_{3} \mathrm{PO}\left(<5 \times 10^{-7}\right)^{8 \mathrm{~b}}$ (estimated using a conversion factor $k(4-$ $\left.\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OPO}_{3} \mathrm{Ph}_{2}\right) / k\left[\left(\mathrm{PhO}_{3} \mathrm{PO}\right)=20\right)$, ${ }^{8 \mathrm{~b}}$ and $\mathrm{PhO}_{3} \mathrm{SCH}_{2} \mathrm{Ph}\left(10^{-9}\right)^{8 \mathrm{sc}, \mathrm{d}}$ ($\mathrm{es}-$ timated by using $k_{\mathrm{OH}^{-}} / k_{\mathrm{H}_{2} \mathrm{O}}=4.27 \times 10^{4}$ for $\mathrm{PhOMs}^{8 \mathrm{dd}}$ and $k_{\mathrm{OH}^{-}}$for $\left.\mathrm{PhO}_{3} \mathrm{SCH}_{2} \mathrm{Ph}\right){ }^{8 \mathrm{cc}} k_{\mathrm{OH}^{-}}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right): \mathrm{PhOAc}(1.27){ }^{8 \mathrm{ab}}(\mathrm{PhO})_{3} \mathrm{PO}\left(1.6 \times 10^{-2}\right),{ }^{8 \mathrm{bb}}$ and $\mathrm{PhO}_{3} \mathrm{SCH}_{2} \mathrm{Ph}\left(4.94 \times 10^{-5}\right)$. ${ }^{8 c}$
(8) (a) Jencks, W. P.; Gilchrist, M. J. Am. Chem. Soc. 1968, 90 , 2622-2637. (b) Bunton, C. A.; Farber, S. J.; Fendler, E. J. J. Org. Chem. 1968, 33, 29-33. (c) Zaborsky, O. R.; Kaiser, E. T. J. Am. Chem. Soc. 1966, 88, 3084-3087. (d) Bunton, C. A.; Welch, V. A. J. Chem. Soc. 1956, 3240-3242.
demonstrated by the formation of $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{OBz}$ in 46% yield in this reaction. Further experimental studies designed to establish the details of these reactions are in progress.

Acknowledgment. Support in Toronto by the Natural Sciences and Engineering Research Council of Canada and in Utah by the National Cancer Institute of the National Institutes of Health (Grant 1ROCA16903) is gratefully acknowledged.

Supplementary Material Available: Tables II-IV containing rate constants and solvent isotope effect calculations for 1-3 (5 pages). Ordering information is given on any current masthead page.

Reaction of Phosphorus Ylides with Elemental Selenium: Generation of Selenoaldehydes and Selenium-Catalyzed $\mathrm{Ph}_{3} \mathrm{P}=$ CHR Cleavage To Give RHC $=$ CHR and Triphenylphosphine

Gerhard Erker,* Regina Hock, and Rainer Nolte

Institut für Organische Chemie Universität Würzburg, Am Hubland D-8700 Würzburg, Federal Republic of Germany

Received August 3, 1987
Selenoaldehydes (RCHSe) $\mathbf{2}$ are more reactive than their oxygen analogues RCHO. With very few exceptions, this has prevented the isolation of the monomeric RCHSe species. ${ }^{1-3}$ The enhanced and often different reactivity makes selenoaldehydes objects of general interest and indicates some special synthetic potential. In situ generated selenocarbonyl compounds $\mathbf{2}$ undergo thermally induced [$4+2$] cycloaddition reactions with conjugated dienes to form 3,6 -dihydro- 2 H -selenapyran derivatives $4{ }^{4}$ When carried out with aldehydes, the analogous reactions require strong acid catalysis. ${ }^{5}$

Several methods to generate selenoaldehydes have been reported, most of which are variants of 1,2 -elimination reactions employing suitably substituted precursors $\mathrm{X}-\mathrm{RCHSe}-\mathrm{Y} \mathrm{F}^{2,4}$ We report here a fundamentally different way of generating the RCHSe species 2 by treating alkylidene triphenylphosphoranes $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHR} 1$ with elemental selenium. ${ }^{6}$

The reaction between elemental selenium (2.1 equiv) and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHR}$ was carried out at $90^{\circ} \mathrm{C}$ with use of an excess of a conjugated diene as a Diels-Alder trapping agent (Scheme I). Typically, a red solution of benzylidene triphenylphosphorane 1a (12 mmol , in 50 mL of toluene) was added dropwise over a period of 48 h to a hot $\left(90^{\circ} \mathrm{C}\right.$) mixture of 2,3-dimethylbutadiene (177 $\mathrm{mmol})$ and $\mathrm{Se}(2.0 \mathrm{~g})$ in 50 mL of toluene. Decolorization of the ylide occurred rapidly, and $\mathrm{Ph}_{3} \mathrm{PSe}$ precipitated. 3,6-Dihydro4,5 -dimethyl-2-phenyl- 2 H -selenapyran 4 a was isolated from the solution (41% yield after chromatography). ${ }^{7}$ The corresponding

[^2]Scheme I

$3(R=P h)$
heterocycles $\mathbf{4 c}$ and $\mathbf{4 d}$ were identified by NMR from the reaction of the ylides $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHR}\left(\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{4} \mathrm{H}_{9}\right)$ with selenium and 2,3-dimethylbutadiene. An analogous reaction was carried out employing $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHPh}$ and anthracene to give 3 (21\%). ${ }^{7}$ Compound 3 , when heated to $75^{\circ} \mathrm{C}$ in chloroform in the presence of excess 2,3 -dimethylbutadiene, decomposed and transferred the selenobenzaldehyde unit to give $4 a$ and anthracene.
In the absence of the diene scavenger, a different reaction was
 excess selenium to yield stilbene and triphenylphosphine selenide ${ }^{8}$ (eq 1). Surprisingly, $\mathrm{Ph}_{3} \mathrm{PSe}$ itself is capable of inducing the

cleavage of nonstabilized ylides $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHR}$ 1a-e to give the alkylidene coupling product $\mathrm{RCH}=\mathrm{CHR}$ and triphenylphosphine. This indicated that alkylidene triphenylphosphoranes $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHR}$ can be catalytically cleaved by elemental selenium to give $\mathrm{RCH}=\mathrm{CHR}$ and 2 equiv of $\mathrm{PPh}_{3}{ }^{9}$ We were able to demonstrate this by reacting benzylidene triphenylphosphorane (58 mmol) in 100 mL of toluene with 5.8 mmol of selenium. Reaction took place rapidly. After 6 -h reaction time and usual workup, stilbene (64%) and $\mathrm{PPh}_{3}(70 \%)$ were isolated. Similar results were obtained reacting ylides $\mathrm{Ph}_{3} \mathrm{P}=$ CHR 1a-e each with $1 / 10$ equiv of gray selenium or $\mathrm{Ph}_{3} \mathrm{PSe}$ in toluene solution. In each case a near-tothermodynamic mixture of the two geometric isomers of the expected olefin was obtained [(cis/trans ratio (yield): stilbene (a) $16 / 84$ (64\%); 2-butene (b) $20 / 80(53 \%) ; 3$-hexene (c) $17 / 85$

[^3]
[^0]: (15) Whereas $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{c}}$, and H_{f} shift by $\delta 1.13,1.15$, and 0.80 ppm upon adding $14.5 \mathrm{~mol} \% \mathrm{Eu}(\mathrm{bfc})_{3}, \mathrm{H}_{\mathrm{b}}$ and the two methyl groups only shift by δ $0.53,0.17$, and 0.16 under these conditions.
 (16) Cf. Hōnel, M.; Mosher, H. S. J. Org. Chem. 1985, 50, 4386. Wiberg, K. B.; Saegebarth, K. A. J. Am. Chem. Soc. 1957, 79, 2822.
 (17) Yaginuma, S.; Muto, N.; Tsujino, M.; Sudate, Y.; Hayashi, M.; Otani, M. J. Antibiot. 1981, 34, 359.

[^1]: ${ }^{+}$University of Toronto.
 ${ }^{+}$University of Utah.
 (1) (a) Stang, P. J.; Surber, B. W.; Chen, Z.; Roberts, K. A.; Anderson, A. G. J. Am. Chem. Soc. 1987, 109, 228-235. (b) Stang, P. J.; Boehshar, M.; Lin, J. Ibid. 1986, 108, 7832-7834. (c) Stang, P. J.; Roberts, K. A. J. Org. Chem. 1987, 52, 5213.
 (2) For leading references see the following. (a) Alkyl/aryl carboxylates: Kirby, A. J. In Comprehensive Chemical Kinetics; Bamford, C. H., Tipper, C. F. H., Eds.; Elsevier: 1972; Vol. 10, Chapter 2, pp 57-207. (b) Euranto, E. K. In The Chemistry of Carboxylic Acids and Esters; Patai, S., Ed.; Wiley: 1969; Chapter 11. (c) Alkyl/aryl phosphates: Bunton, C. A. Acc. Chem. Res. 1970, 3, 257-262. (d) Lyznicki, E. P., Jr.; Oyama, K.; Tidwell, T. T. Can. J. Chem. 1974, 52, 1066-1071. (e) Alkyl/aryl tosylates: Bentley, T. W.; Jurczyk, S.; Roberts, K.; Williams, D. J. J. Chem. Soc., Perkin Trans. 2, 1987, 293-299. (f) Vizgert, R. V. Russ. Chem. Revs. 1963, 32, 1-20. (g) Alkenyl carboxylates: Euranto, E. K. Pure Appl. Chem. 1977, 49, 1009-1020. (h) Novack, M.; Loudon, G. M. J. Org. Chem. 1977, 42, 2499-2504. (i) Alkenyl phosphates: Novack, M.; Roy, K. R. J. Org. Chem. 1984, 49, 4584-4590. (j) Attia, S. Y.; Berry, J. P.; Koshy, K. M.; Leung, Y.-K.; Lyznicki, E. P., Jr.; Nowlan, V. J.; Oyama, K.; Tidwell, T. T. J. Am. Chem. Soc. 1977, 99, 3401-3408. (k) Alkenyl sulfonates: Frydman, N.; Bixon, R.; Sprecher, M.; Mazur, Y. Chem. Commun. 1969, 1044-1045.
 (3) (a) Miller, S. I.; Dickstein, J. I. Acc. Chem. Res. 1976, 9, 358-363. (b) Glasser, R. J. Am. Chem. Soc. 1987, 109, 4237-4343.

[^2]: (1) Reid, D. H.; Webster, R. G.; McKenzie, S. J. Chem. Soc., Perkin Trans. 1 1979, 2334.
 (2) Organoselenium Chemistry; Liotta, D., Ed.; Wiley: New York, 1987. Paulmier, C. Selenium Reagents and Intermediates in Organic Synthesis; Pergamon Press: Oxford, 1986; and references cited therein
 (3) Judge, R. H.; Moule, D. C. J. Am. Chem. Soc. 1984, IO6, 5406. Bock, H.; Aygen, S.; Rosmus, P.; Solouki, B.; Weißflog, E. Chem. Ber. 1984, 117, 187.
 (4) (a) Krafft, G. A.; Meinke, P. T. J. Am. Chem. Soc. 1986, I08, 1314. (b) Kirby, G. W.; Trethewey, A. N. J. Chem. Soc., Chem. Commun. 1986, 1153.
 (5) Griengl, H.; Geppert, K. P. Mh. Chem. 1976, 107, 675.
 (6) See, for a comparison: Fischer, H.; Zeuner, S.; Riede, J. Angew. Chem. 1984, 96, 707. Headford, C. E. L.; Roper, W. R. J. Organomet. Chem. 1983, 244, C53. Hofmann, L.; Werner, H. J. Organomet. Chem. 1983, 255, C41. Werner, H.; Hofmann, L.; Wolf, J.; Müller, G. J. Organomet. Chem. 1984, 280, C55. For reactions of metal coordinated selenobenzaldehyde with olefinic substrates, see: Fischer, H.; Gerbing, U.; Riede, J.; Benn, R. Angew. Chem. 1986, 98, 80. Fischer, H.; Tiriliomis, A.; Gerbing, U.; Huber, B.; Müller, G. J. Chem. Soc., Chem. Commun. 1987, 559.

[^3]: (7) 3,6-Dihydro-4,5-dimethyl-2-phenyl-2 H -selenapyran (4a) (oil after chromatography, silica/petrol): ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.66,1.75$ $\left(\mathrm{s}, 3 \mathrm{H}\right.$ each, $\left.\mathrm{CH}_{3}\right), 2.43,2.64,4.00\left(\mathrm{ABX},{ }^{2} J=15.8 \mathrm{~Hz},{ }^{3} J=11.4\right.$ and 3.8 $\mathrm{Hz}, 1 \mathrm{H}$ each, H2, H3, H3'), $3.00,3.34$ (AB, ${ }^{2} J=16.3 \mathrm{~Hz}, 1 \mathrm{H}$ each, H6, H^{\prime}), $7.1-7.3$ (m, 5 H , phenyl); ${ }^{13} \mathrm{C}\left(50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.9,20.7$ (methyl-C), 24.1 ($\mathrm{t}, 140 \mathrm{~Hz}, \mathrm{C} 3$), 38.5 (d, $142 \mathrm{~Hz}, \mathrm{C} 2$), $40.8(\mathrm{t}, 127 \mathrm{~Hz}, \mathrm{C} 6$), 124.7 (C4), 126.8, 127.4, 128.5, 143.5 (phenyl-C), 129.3 (C5); MS (70 eV), m / z for $M^{+}=252.0418$, theoretical 252.0417. Anal. C, H. 3: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.4-6.7(\mathrm{~m}, \mathrm{Ph}), 5.35(\mathrm{~s}), 4.77(\mathrm{~d}, 4.0 \mathrm{~Hz}), 4.34(\mathrm{~d}, 1 \mathrm{H}$ each $)$; see ref 4 b for a comparison.
 (8) Analogous reactions of ylides with molecular oxygen are well known: Bestmann, H. J.; Kratzer, O. Chem. Ber. 1963, 96, 1899. For some recent work on ylide oxidation, see: Ricci, A.; Fiorenza, M.; Degl'Innocenti, A.; Seconi, G.; Dembeck, P.; Witzgall, K.; Bestmann, H. J. Angew. Chem. 1985, 97,1068 and references cited therein.
 (9) To our knowledge, a pairwise exchange mechanism (of the type $\mathrm{R}_{3} \mathrm{P}=\mathrm{CHR}^{\mathrm{a}}+\mathrm{R}_{3}{ }^{\mathrm{P}} \mathrm{P}=\mathrm{CHR}^{\mathrm{b}} \rightleftharpoons \mathrm{R}_{3} \mathrm{P}=\mathrm{CHR}^{\mathrm{b}}+\mathrm{R}_{3}{ }^{\mathrm{P}}=\mathrm{CHR}^{\mathrm{a}}$) had only once been proposed in the literature (Bestmann, H. J.; Snyder, J. P. J. Am. Chem. Soc. 1967, 89, 3936). Since this interpretation was later corrected in favor of a trans ylidation mechanism (Crew, P. J. Am. Chem. Soc. 1968, 90, 2961. Bestmann, H. J.; Liberda, H,. G.; Snyder, J. P. J. Am. Chem. Soc. 1968, 90, 2963. See, also: Schmidbaur, H.; Tronick, W. Angew. Chem. 1967, 79, 412), a pairwise ylide alkylidene exchange reaction appears not to have been observed yet experimentally. In view of the close mechanistic similarity to the olefin metathesis reaction ${ }^{10}$ one might therefore be tempted to use the term "ylide metathesis" for the here described $2 \mathrm{R}_{3} \mathrm{P}=\mathrm{CHR} \rightarrow 2 \mathrm{R}_{3} \mathrm{P}+\mathrm{RCH}=$ CHR transformation.

